
ROOT Course 1 Fons Rademakers

ROOT Course

Fons Rademakers

GSI Darmstadt

Reference material:

• The ROOT web site: http://root.cern.ch/

• Digest of roottalk mailing list:
http://root.cern.ch/root/roottalk/

Tutorials come with the ROOT distribution, see directories:

• $ROOTSYS/test

• $ROOTSYS/tutorials

Basic understanding of OOP and C++ assumed

ROOT Course 2 Fons Rademakers

Prehistory

In the beginning there was PAW

• HBOOK

• ZEBRA

• KUIP

• COMIS

• SIGMA

Mini/Micro-DST analysis was done using Ntuples (RWN and CWN)

• Ntuples are basically simple tables

• Only basic types (RWN only floats)

• No data structures

• No cross reference between Ntuples

• Successful because simple and efficient

Dead-end

• No way to grow to more complex data structures

• Difficult to extend

• Expensive to maintain

• Written in soon to be obsolete language -:)

ROOT Course 3 Fons Rademakers

Main Goals for New System

Being able to support full data analysis chain

• Raw data, DSTs, mini-DSTs, micro-DSTs

Being able to handle complex structures

• Complete objects

• Object hierarchies

Support at least the PAW data analysis functionality

• Histogramming

• Fitting

• Visualization

Only one language

• C++

Better maintainable

• Use OOP

Make the system extensible

• Use OO framework technology

ROOT Course 4 Fons Rademakers

Advantages of Object-Oriented Programming

Object-Oriented programming has been around for at least 20
years. However, it has never been a serious option for scientific
computing due to the large performance overhead.

Only with the introduction of C++, which inherited a lot of its syn-
tax and efficiency from the popular C language, was there a viable
alternative.

Object-Oriented Programming offers real benefits compared to
Procedure-Oriented Programming:

• Encapsulation enforces data abstraction and increases opportunity for
reuse

• Subclassing and inheritance make it possible to extend and modify ob-
jects

• Class hierarchies and containment hierarchies provide a flexible mecha-
nism for modeling real-world objects and the relationships among them

• Complexity is reduced because there is little growth of the global state,
the state is contained within each object, rather than scattered through
the program in the form of global variables

• Objects may come and go, but the basic structure of the program re-
mains relatively static, increases opportunity for reuse of design

ROOT Course 5 Fons Rademakers

Frameworks

A framework is a collection of cooperating classes that make up a
reusable design solution for a given problem domain.

There are three main differences between frameworks and class libraries:

Behaviour versus protocol. Class libraries are essentially collections of
behaviours that you can call when you want those individual behaviours in
your program. A framework, on the other hand, provides not only behav-
iour but also the protocol or set of rules that govern the ways in which be-
haviours can be combined.

Don’t call us, we’ll call you. With a class library, the code the program-
mer writes instantiates objects and calls their member functions. With a
framework a programmer writes code that overrides and is called by the
framework. The framework manages the flow of control among its objects.
This relationship is expressed by the principle: ‘‘Don’t call us, we’ll call
you’’.

Implementation versus design. With class libraries programmers reuse
only implementations, whereas with frameworks they reuse design. A
framework embodies the way a family of related classes work together.

inherits from

Class A
member function B

Class Y
virtual member function Z

calls

Class NewY
virtual member function Z

Class

Class
Class

Class

Program using
subclassing API

Program using
calling API

Framework

Figure 2 Calling API versus subclassing API

ROOT Course 6 Fons Rademakers

Calling API Versus Subclassing API

Frameworks can be thought of as having two Application Pro-
grammer Interfaces (APIs): a calling API, which resembles a class
library, and a subclassing API, which is used for overriding frame-
work member functions.

The calling/subclassing distinction describes the mechanism by
which functions are invoked: call or be called.

ROOT Course 7 Fons Rademakers

Advantages of Frameworks

The benefits of frameworks can be summarized as follows:

• Less code to write. Much of the program’s design and structure, as
well as its code, already exist in the framework.

• More reliable and robust code. Code inherited from a framework has
already been tested and integrated with the rest of the framework.

• More consistent and modular code. Code reuse provides consistency
and common capabilities between programs, no matter who writes
them. Frameworks also make it easier to break programs into smaller
pieces.

• More focus on areas of expertise. Users can concentrate on their
particular problem domain. They don’t have to be experts at writing
user interfaces, graphics, or networking to use the frameworks that pro-
vide those services.

ROOT Course 8 Fons Rademakers

Schematic View of the ROOT System

ROOT Course 9 Fons Rademakers

The ROOT Class Categories

The ROOT system consists of the following class categories and
frameworks:

• Basic Classes

• Container Classes

• Histogram and Minimization Classes

• Tree and Ntuple Classes

• 2D Graphics Classes

• 3D Graphics and Detector Geometry Classes

• Graphical User Interface (Motif and Win32) Classes

• Meta Classes + Interface to the CINT C++ Interpreter

• Operating System Interface Classes

• Networking Classes

• Documentation Classes

• Interactive Interface

• PROOF Server

ROOT Course 10 Fons Rademakers

What Do I Mean With ‘‘ROOT’’

ROOT is:

1 A set of OO frameworks that a programmer can use to build applica-
tions. The frameworks are available as a set of header files and librar-
ies. Use and/or inherit from the ROOT classes and link with the librar-
ies to build your application. ROOT is not an "all or nothing" proposi-
tion, you can use only the parts you need, e.g. histogramming, graphics,
etc.

2 An interactive stand-alone application, root (or root.exe), which
gives access to all ROOT classes via a command line interpreter or GUI.
The root application can be extended at run time by loading shared li-
braries of user code.

The command line interpreter is a C++ interpreter:
$ root
root[0] printf("Hello World\n");
Hello World
root [1]

ROOT Course 11 Fons Rademakers

Running the Interactive ROOT Program

The same Hello World with some graphics...

Start the interactive version of ROOT and execute the following two com-
mands:

$ root
root[0] TPaveLabel hello(0.2,0.4,0.8,0.6,"Hello World")
root[1] hello.Draw()

The first command creates an object of class TPaveLabel . The second com-
mand will draw the pavelabel object (this will automatically create a
graphics canvas).

You can now use the mouse to:

• Move the mouse on the pave and press the left button. Keeping the left
button pressed, you can move the pave in the canvas.

• Point to one of the corners of the pave and grow or shrink the pave.

• Move the mouse on the pave and press the right button. You get a con-
text pop-up menu showing a list of possible pave member functions.

ROOT Course 12 Fons Rademakers

ROOT Command Line Options

The root executable support the following command line options:

(hproot) [771] root -?
Usage: root [-b] [-n] [-q] [file1.C ... fileN.C]
Options:
 -b : run in batch mode without graphics
 -n : do not execute logon and logoff macros as
 specified in .rootrc
 -q : exit after processing command line macro files

At start-up root looks for a .rootrc file in the following order:

• ./.rootrc (local)

• $HOME/.rootrc (user)

• $ROOTSYS/.rootrc (global)

The options are merged, with precedence local, user, global
(do: gEnv->Print() to see current settings)

The .rootrc file typically looks like:

Path used by dynamic loader to find shared libraries
Unix.*.Root.DynamicPath: .:~/rootlibs:$ROOTSYS/lib
Unix.*.Root.MacroPath: .:~/rootmacros:$ROOTSYS/macros

Activate memory statistics
Rint.Root.MemStat: 1
Rint.Load: rootalias.C
Rint.Logon: rootlogon.C
Rint.Logoff: rootlogoff.C

Rint.Canvas.MoveOpaque: false
Rint.Canvas.HighLightColor: 5

The rootlogon.C and rootlogoff.C files are simple macro files that
will be loaded and executed at start-up and shutdown of root . The
rootalias.C file will be loaded but not executed. It typically contains
small utility functions.

ROOT Course 13 Fons Rademakers

My First ROOT Program

The same Hello World example now as stand-alone application.

// Source: $ROOTSYS/test/hworld.cxx
// This small demo shows the traditional "Hello World".
// Its main use is to show how to use ROOT graphics
// and how to enter the eventloop to be able to
// interact with the graphics.

#include "TROOT.h"
#include "TApplication.h"
#include "TCanvas.h"
#include "TPaveLabel.h"

extern void InitGui();
VoidFuncPtr_t initfuncs[] = { InitGui, 0 };

TROOT root("hello","Hello World", initfuncs);

int main(int argc, char **argv)
{
 TApplication theApp("App", &argc, argv);

 TCanvas *c = new TCanvas("Hello", "The Hello Canvas",
 400, 400);

 TPaveLabel *hello = new TPaveLabel(0.2,0.4,0.8,0.6,
 "Hello World");
 hello->Draw();

 // Enter event loop, one can now interact with the
 // objects in the canvas. Select "Exit ROOT" from
 // the canvas "File" menu to exit the program.
 theApp.Run();

 return 0;
}

ROOT Course 14 Fons Rademakers

Essential Ingredients of a ROOT Based Program

Every ROOT program must contain one TROOT object

• The TROOT object must be created as global object (i.e. before main() is
called) or it must be the first object created in main() . I must exists
during the complete life-time of the program.

• The TROOT object can only be created on the stack (protected operator
new). This guarantees the calling of the TROOT destructor.

• The TROOT object keeps track of all created objects and resources

• The TROOT object is always accessible via the global gROOT pointer

• The TROOT class is a singleton

Every ROOT program wanting the interact with the user must
contain one TApplication (or TApplication derived) object

• The TApplication::Run() method starts the ROOT eventloop

• Run() never returns unless its argument is kTRUE

• In the eventloop the GUI is active

• Use TRint instead of TApplication to get also a command line
prompt in the eventloop

• The TApplication class is a singleton

ROOT Course 15 Fons Rademakers

Intermezzo: The ROOT Program

///
// //
// RMain //
// //
// Main program used to create ROOT application. //
// //
///

#include "TROOT.h"
#include "TRint.h"

extern void InitGui();

int Error; // needed by Motif on HP-UX

VoidFuncPtr_t initfuncs[] = { InitGui, 0 };

TROOT root("Rint","The ROOT Interactive Interface",
 initfuncs);

int main(int argc, char **argv)
{
 TRint *theApp = new TRint("Rint", &argc, argv, 0, 0);

 theApp->Run();

 delete theApp;

 return(0);
}

ROOT Course 16 Fons Rademakers

Compiling and Linking a ROOT Program

Compiling a ROOT program requires the option:

• -I$ROOTSYS/include

Linking requires the option:

• -L$ROOTSYS/lib

And the libraries:

• -lBase -lCint -lClib -lCont -lFunc -lGraf -lGraf3d
 -lHist -lHtml -lMeta -lMinuit -lNet -lPostscript
 -lProof -lTree -lUnix -lZip

• -lGpad -lGX11 -lMotif -lWidgets -lX3d
 (plus Motif and X11 libs)

For a complete example see the file:

 $ROOTSYS/test/Makefile

ROOT Course 17 Fons Rademakers

Intermezzo: ROOT Coding Convention

We use the following conventions (based on Taligent):

Identifier Convention Example

Classes Begin with T THashTable

Non-class types End with _t Simple_t

Enumeration types Begin with E EColorLevel

Data members Begin with f for field fViewList

Member functions Begin with a capital Draw()

Static variables Begin with g gSystem

Static data members Begin with fg fgTokenClient

Locals and parameters Begin with lower case seed , thePad
Constants Begin with k kInitialSize , kRed
Template arguments Begin with A AType

Getters and setters Begin with Get , Set ,
or Is (boolean)

SetLast() , Get-
First() , IsDone()

In any name that contains more than one word, the first word follows the
convention for the type of the name, and subsequent words follow with the
first letter of each word capitalized, such as TTextBase .

Do not use underscores except for #define symbols.

Don’t impose too rigid rules. People will not follow them.

However, the agreed upon rules should be followed religiously
otherwise the result will be worse than chaos.

ROOT Course 18 Fons Rademakers

The CINT C++ Interpreter

The CINT C/C++ interpreter has been developed by Masaharu Goto
of HP Japan.

CINT has the following main features:

• It implements 95% of ANSI C and 85% of (ANSI) C++.

• It is robust and complete enough to interpret itself (80000 lines of C).

• Interpreter technology allows for very fast prototyping. No more
compile/link cycles.

• It is fast. Faster than tcl, perl, python.

• It has good debugging facilities.

• It can be easily interfaced to any C or C++ library by (dynamically) link-
ing the library and library stubs and dictionary (generated by CINT
from the library header files).

• It is fully embedded into the ROOT system. It acts as command line and
macro processor.

• It provides ROOT with full RTTI of all classes (used a.o. to generate
Streamer() , ShowMembers() and the HTML documentation).

• The command line, macro and programming languages become the
same.

ROOT Course 19 Fons Rademakers

The ROOT Command Line Interface

(hproot) [199] root

 * *
 * W E L C O M E to R O O T *
 * *
 * Version 1.00/10 25 April 1997 *
 * *
 * You are welcome to visit our Web site *
 * http://root.cern.ch *
 * *

CINT/ROOT C/C++ Interpreter version 5.13.3, Mar 20 1997
Type ? for help. Commands must be C++ statements.
Enclose multiple statements between { }.

root [0] TLine l
root [1] l.Print()
TLine X1=0.000000 Y1=0.000000 X2=0.000000 Y2=0.000000
root [2] l.SetX1(10)
root [3] l.SetY1(11)
root [4] l.Print()
TLine X1=10.000000 Y1=11.000000 X2=0.000000 Y2=0.000000
root [5] .g
...
...
0x4038f080 class TLine l , size=40
 0x0 protected: Coord_t fX1 //X of 1st point
 0x0 protected: Coord_t fY1 //Y of 1st point
 0x0 protected: Coord_t fX2 //X of 2nd point
 0x0 protected: Coord_t fY2 //Y of 2nd point
 0x0 private: static class TClass* fgIsA

Here we note:

• Terminating ; not required.

• Emacs style command line editing.

• Raw interpreter commands start with a . (dot).

ROOT Course 20 Fons Rademakers

The ROOT Command Line Interface (contd.)

root [6] .class TLine
===
class TLine //A line segment
 size=0x28
List of base class-------------------------------
0x0 public: TObject //Basic ROOT object
0xc public: TAttLine //Line attributes
List of member variable--------------------------
Defined in TLine
0x0 protected: Coord_t fX1 //X of 1st point
0x0 protected: Coord_t fY1 //Y of 1st point
0x0 protected: Coord_t fX2 //X of 2nd point
0x0 protected: Coord_t fY2 //Y of 2nd point
0x0 private: static class TClass* fgIsA
List of member function--------------------------
Defined in TLine
filename line:size busy function type and name
(compiled) 0:0 0 public: class TLine TLine(void);
(compiled) 0:0 0 public: Coord_t GetX1(void);
(compiled) 0:0 0 public: Coord_t GetX2(void);
(compiled) 0:0 0 public: Coord_t GetY1(void);
(compiled) 0:0 0 public: Coord_t GetY2(void);
...
...
(compiled) 0:0 public: virtual void SetX1(Coord_t x1);
(compiled) 0:0 public: virtual void SetX2(Coord_t x2);
(compiled) 0:0 public: virtual void SetY1(Coord_t y1);
(compiled) 0:0 public: virtual void SetY2(Coord_t y2);
(compiled) 0:0 0 public: void ~TLine(void);
root [7] l.Print(); > test.log
root [8] l.Dump(); >> test.log
root [9] ?

Here we see:

• Use .class as quick help and reference.

• Unix like I/O redirection (; is required before >).

• Use ? to get help on all ‘‘raw’’ interpreter commands

ROOT Course 21 Fons Rademakers

The ROOT Command Line Interface (contd.)

Now lets execute a multi line command:

root [9] {
end with ’}’> TLine l;
end with ’}’> for (int i = 0; i < 5; i++) {
end with ’}’> l.SetX1(i);
end with ’}’> l.SetY1(i+1);
end with ’}’> l.Print();
end with ’}’> }
end with ’}’> }
TLine X1=0.000000 Y1=1.000000 X2=0.000000 Y2=0.000000
TLine X1=1.000000 Y1=2.000000 X2=0.000000 Y2=0.000000
TLine X1=2.000000 Y1=3.000000 X2=0.000000 Y2=0.000000
TLine X1=3.000000 Y1=4.000000 X2=0.000000 Y2=0.000000
TLine X1=4.000000 Y1=5.000000 X2=0.000000 Y2=0.000000
root [10] .q

Here we note:

• A multi-line command starts always with a { and ends with a } .

• Every line has to be correctly terminated with a ; (like in ‘‘real’’ C++).

• All objects are created in global scope.

• There is no way to back up. Better write a macro.

• Use .q to exit root.

For more details see:
http://root.cern.ch/root/CintInterpreter.html

ROOT Course 22 Fons Rademakers

The ROOT Macro Processor

ROOT/CINT macro files contain pure C++ code. They can contain a
simple sequence of statements like in the multi command line ex-
ample given above, but also arbitrarily complex class and function
definitions.

Lets start with a macro containing a simple list of statements (like the
multi command line example given in the previous section). This type of
macro must start with a { and end with a } . Assume the file is called
macro1.C :

//--
{
#include <iostream.h>

 cout << " Hello" << endl;
 float x = 3.;
 float y = 5.;
 int i = 101;
 cout <<" x = "<<x<<" y = "<<y<<" i = "<<i<< endl;
}
//--

To execute the stream of statements in macro1.C do:
root [1] .x macro1.C

This loads the contents of file macro1.C and executes all statements in the
interpreter’s global scope.

One can re-execute the statements by re-issuing ".x macro1.C " (since
there is no function entry point).

Macros are searched for in the Root.MacroPath as defined in your
.rootrc file. To check which macro is being executed use:
root [2] .which macro1.C
/home/rdm/root/./macro1.C

ROOT Course 23 Fons Rademakers

The ROOT Macro Processor (contd.)

Now copy file macro1.C to macro2.C and add a function statement. Like
this:

//--
#include <iostream.h>

int main()
{
 cout << " Hello" << endl;
 float x = 3.;
 float y = 5.;
 int i= 101;
 cout <<" x = "<<x<<" y = "<<y<<" i = "<<i<<endl;
 return 0;
}
//--

Notice that no surrounding { and } are required in this case.

To execute function main() in macro2.C do:

root [1] .L macro2.C // load macro in memory
root [2] main() // execute entry point main
 Hello
 x = 3 y = 5 i = 101
(int)0
root [3] main() // execute main() again
 Hello
 x = 3 y = 5 i = 101
(int)0
root [4] .func // list all functions known by CINT
filename line:size busy function type and name
...
macro2.C 4:9 0 public: int main();

The last command shows that main() has been loaded from file
macro2.C , that the function main() starts on line 4 and is 9 lines long.
Notice that once a function has been loaded it becomes part of the system
just like a compiled function.

ROOT Course 24 Fons Rademakers

The ROOT Macro Processor (contd.)

Now we copy file macro2.C to macro3.C and change the function name
from main() to macro3(int j = 10) :

//--
#include <iostream.h>

int macro3(int j = 10)
{
 cout << " Hello" << endl;
 float x = 3.;
 float y = 5.;
 int i = j;
 cout <<" x = "<<x<<" y = "<<y<<" i = "<<i<<endl;
 return 0;
}
//--

To execute macro3() in macro3.C type:

root [1] .x macro3.C(8)

This loads the contents of file macro3.C and executes entry point
macro3(8) . Note that the above only works when the filename (minus ex-
tension) and function entry point are both the same. Function macro3()
can still be executed multiple times:

root [2] macro3()
 Hello
 x = 3 y = 5 i = 10
(int)0
root [3] macro3(33)
 Hello
 x = 3 y = 5 i = 33
(int)0

ROOT Course 25 Fons Rademakers

The ROOT Macro Processor (contd.)

A Macro Containing a Class Definition

Lets create a small class TMyClass and a derived class TChild . The vir-
tual TMyClass::Print() method is overridden in TChild :

//--
#include <iostream.h>

class TMyClass {

private:
 float fX; //x position in centimeters
 float fY; //y position in centimeters

public:
 TMyClass() { fX = fY = -1; }
 virtual void Print() const;
 void SetX(float x) { fX = x; }
 void SetY(float y) { fY = y; }
};

void TMyClass::Print() const
{
 cout << "fX = " << fX << ", fY = " << fY << endl;
}

class TChild : public TMyClass {
public:
 void Print() const;
};

void TChild::Print() const
{
 cout << "This is TChild::Print()" << endl;
 TMyClass::Print();
}
//--

and save it in file macro4.C .

ROOT Course 26 Fons Rademakers

The ROOT Macro Processor (contd.)

To execute macro4.C do:

root [0] .L macro4.C
root [1] TMyClass *a = new TChild
root [2] a.Print()
This is TChild::Print()
fX = -1, fY = -1
root [3] a.SetX(10)
root [4] a.SetY(12)
root [5] a.Print()
This is TChild::Print()
fX = 10, fY = 12
root [6] .class TMyClass
===
class TMyClass
 size=0x8 FILE:macro4.C LINE:3
List of base class-----------------------------------
List of member variable------------------------------
Defined in TMyClass
0x0 private: float fX
0x4 private: float fY
List of member function------------------------------
Defined in TMyClass
filename line:size busy function type and name
macro4.C 16:5 0 public: class TMyClass
 TMyClass(void);
macro4.C 22:4 0 public: void Print(void);
macro4.C 12:1 0 public: void SetX(float x);
macro4.C 13:1 0 public: void SetY(float y);
root [7] .q

As you can see an interpreted class behaves just like a compiled class.

Current limitation:

• Classes defined in a macro can not inherit from TObject . Currently the
interpreter can not patch the virtual table of compiled objects to refer-
ence interpreted objects.

ROOT Course 27 Fons Rademakers

Variable Scope and

Resetting the Interpreter Environment

All objects created on the command line are in the interpreter’s global
scope. Also all non-function macros create objects in the global scope.
Therefore:
root [0] TLine l
root [1] TPolyLine l
Error: l already declared as different type. ~TPolyLine()
called
 FILE:/tmp/01156baa LINE:1
root [2] TLine *ll = new TLine
root [3] TPolyLine *ll = new TPolyLine
Error: ll already declared as different type
FILE:/tmp/01156daa LINE:1

To reset the global scope use the function gROOT.Reset()

This clears the global scope to the status just before executing the previous
macro (not including any logon macros). Therefore non-function macros of-
ten start with the statement gROOT.Reset() .

When clearing the global scope the destructors of objects are called (as ex-
pected). Objects created on the heap (via new) are not deleted (also as ex-
pected).
root [0] gDebug=1
(int)1
root [1] TFile f("hsimple.root")
 TKey Reading 307bytes at address 459104
root [2] TFile *f1 = new TFile("noot.root")
 TKey Reading 47bytes at address 148
root [3] gROOT.Reset()
TFile dtor called for hsimple.root
TDirectory dtor called for hsimple.root

ROOT Course 28 Fons Rademakers

Debugging Macros

A powerful feature of CINT is the ability to debug interpreted functions by
means of setting breakpoints and being able to single step through the
code and print variable values on the way. Assume we have macro4.C still
loaded, we can then do:

root [1] .b TChild::Print
Break point set to line 26 macro4.C
root [2] a.Print()

26 TChild::Print() const
27 {
28 cout << "This is TChild::Print()" << endl;
FILE:macro4.C LINE:28 cint> .s

311 operator<<(ostream& ostr,G__CINT_ENDL& i)
{return(endl(ostr));
FILE:iostream.h LINE:311 cint> .s
}
This is TChild::Print()

29 MyClass::Print();
FILE:macro4.C LINE:29 cint> .s

16 MyClass::Print() const
17 {
18 cout << "fX = " << fX << ", fY = " << fY << endl;
FILE:macro4.C LINE:18 cint> .p fX
(float)1.000000000000e+01
FILE:macro4.C LINE:18 cint> .s

311 operator<<(ostream& ostr,G__CINT_ENDL& i)
{return(endl(ostr));
FILE:iostream.h LINE:311 cint> .s
}
fX = 10, fY = 12

19 }

30 }

2 }
root [3] .q

ROOT Course 29 Fons Rademakers

ROOT/CINT Extensions to C++

In the next example we demonstrate three of the most important exten-
sions ROOT/CINT makes to C++. Start root in the directory
root/tutorials (make sure to have first run ".x hsimple.C "):

root [1] f = new TFile("hsimple.root")
(class TFile*)0x4045e690
root [2] f.ls()
TFile** hsimple.root
 TFile* hsimple.root
 KEY: TH1F hpx;1 This is the px distribution
 KEY: TH2F hpxpy;1 py ps px
 KEY: THProfile hprof;1 Profile of pz versus px
 KEY: TNtuple ntuple;1 Demo ntuple
root [3] hpx.Draw()
NULL
Warning in <MakeDefCanvas>: creating a default canvas
with name c1
root [4] .q

The first command shows the first extension; the declaration of f may be
omitted when "new" is used. CINT will correctly create f as pointer to ob-
ject of class TFile .

The second extension is shown in the second command. Although f is a
pointer to TFile we don’t have to use the pointer dereferencing syntax
"-> " but can use the simple ". " notation.

The third extension is more important. In case CINT can not find an ob-
ject being referenced it will ask ROOT to search for an object with an iden-
tical name in the search path defined by TROOT::FindObject() . If
ROOT finds the object it returns CINT a pointer to this object and a
pointer to its class definition and CINT will execute the requested member
function. This shortcut is quite natural for an interactive system and saves
a lot of typing, e.g.:

root [4] TH1 *hpx = (TH1*)gROOT.FindObject("hpx")
root [5] hpx.Draw()

Of course when writing large macros, it is best to stay away from these
shortcuts since otherwise you will later have problems compiling your mac-
ros using a real C++ compiler.

ROOT Course 30 Fons Rademakers

Intermezzo: Interpreting and Compiling a Macro

With some simple #ifdef ’s one can instrument a macro so it can be
either interpreted by root (the executable) or compiled and linked
with ROOT (the libraries):

#ifndef __CINT__

#include <stdio.h>
#include "Root.h"
#include "Class.h"
#include "Method.h"
#include "ClassTable.h"
#include "Collection.h"

#endif

void listmemfun(char *cls = 0)
{
 ...
 ...
}

#ifndef __CINT__

// Initialize the ROOT framework
TROOT api("TestApi", "Test CINT API");

int main()
{
 listmemfun("TObject");
 listmemfun("TClassTable");

 return 0;
}

#endif

ROOT Course 31 Fons Rademakers

Class Descriptions

The full reference guide of all ROOT classes is available on the
web via the URL:

• http://root.cern.ch/root/html/ClassIndex.html

Also reachable via the item ‘‘Classes and Members Reference Guide’’
on the ROOT home page.

The class header files are always the same as the class name + .h:

• TROOT #include <TROOT.h>

• TObject #include <TObject.h>

• TServerSocket #include <TServerSocket.h>

ROOT Course 32 Fons Rademakers

The TROOT Class - The ROOT of Everything

The TROOT object is the entry point to the system.

The single instance of TROOT is always accessible via the global gROOT. Us-
ing the gROOT pointer one has access to basically every object created in a
ROOT based program.

The following lists are accessible via gROOT:

• gROOT->GetListOf Classes()

• gROOT->GetListOf Types()

• gROOT->GetListOf Globals()

• gROOT->GetListOf GlobalFunctions()

• gROOT->GetListOf Files()

• gROOT->GetListOf Sockets()

• gROOT->GetListOf Canvases()

• gROOT->GetListOf Styles()

• gROOT->GetListOf Colors()

• gROOT->GetListOf Functions()

• gROOT->GetListOf Geometries()

• gROOT->GetListOf Browsers()

The TROOT class also provides many useful services, like:

• Get (GetFile()) or find (FindObject()) a pointer to an object in any
of the above lists

• General utilities: Time() , Idle() , Macro() , ProcessLine() , Re-
set() , etc.

ROOT Course 33 Fons Rademakers

The TObject Class - The Mother of All Objects

The TObject class provides default behaviour and protocol for all
objects in the ROOT system.

It provides protocol, i.e. (abstract) member functions, for:

• Object I/O (Read() , Write())

• Error handling (Warning() , Error() , SysError() , Fatal())

• Sorting (IsSortable() , Compare() , IsEqual(), Hash())

• Inspection (Dump() , Inspect())

• Printing (Print())

• Drawing (Draw(), Paint(), ExecuteEvent())

• Bit handling (SetBit() , TestBit())

• Memory allocation (operator new and delete , IsOnHeap())

• Access to meta information (IsA() , InheritsFrom())

• Object brosing (Browse() , IsFolder())

A TObject has two 4 byte data members:

• UInt_t fBits (bit field status word)

• UInt_t fUniqueID (object unique identifier)

Of fBits the high 8 bits are reserved by the system and the low 24 bits
are user setable. fUniqueID is unused for the time being

Every object which inherits from TObject can be stored in the
ROOT collection classes.

ROOT Course 34 Fons Rademakers

Intermezzo: Machine Independent Basic Types

The ROOT system defines a set of typedefs for the basic types, like
int, short, long, etc. Use these typedefs to be sure your code is, and
will stay, portable:

• Char_t Signed 1 byte

• UChar_t Unsigned 1 byte

• Short_t Signed short integer 2 bytes

• UShort_t Unsigned short integer 2 bytes

• Int_t Signed integer 4 bytes

• UInt_t Unsigned integer 4 bytes

• Long_t Signed long integer 8 bytes

• ULong_t Unsigned long integer 8 bytes

• Float_t Float 4 bytes

• Double_t Float 8 bytes

• Bool_t Boolean (kFALSE, kTRUE)

ROOT Course 35 Fons Rademakers

The ROOT Collection Classes

Collections are a key feature of the ROOT system. Many, if not
most, of the applications you write will use collections. The ROOT
collections are so called polymorphic collections.

The following features will be demonstrated:

• How to create instances of collections

• The difference between lists, ordered collections, hashtables, maps, etc.

• How to add and remove elements of a collection

• How to search a collection for a specific element

• How to access and modify collection elements

• How to iterate over a collection

• How to manage memory for collections and collection elements

• How collection elements are tested for equality (IsEqual())

• How collection elements are compared (Compare()) in case of sorted
collections

• How collection elements are hashed (Hash()) in hash tables

ROOT Course 36 Fons Rademakers

Understanding Collections

A collection is a group of related objects:

• Collections of points and lines might be managed by a graphics pad

• A vertex will have a collection of tracks

• A detector geometry contains collections of shapes, materials, rotation
matrices and sub-detectors

Collections can be thought of as polymorphic containers that can
contain different types of elements:

• Elements must be instances of classes

• Elements must be instances of classes descending from TObject

Collections themselves are descendants of TObject. So collections
can contain other collections in a tree structure:

• Graphics pads (TPad) containing other pads

• Detectors in detectors

The basic protocol TObject defines for collection elements are:

• IsEqual()

• Compare()

• IsSortable()

• Hash()

How to use and override these members functions will be shown later.

ROOT Course 37 Fons Rademakers

Types of Collections

The ROOT system implements the following type of collections:

Ordered Collections (Sequences)

Sequences are collections that are externally ordered because they main-
tain internal elements according to the order in which they were added.
The following sequences are available:

• TList

• THashList

• TOrdCollection

• TObjArray

• TClonesArray

Both the TObjArray as well as the TOrdCollection can be sorted using
their Sort() member function (assuming the stored items are sortable).

Sorted Collection

Sorted collections are ordered by an internal (automatic) sorting mecha-
nism. The following sorted collections are available:

• TSortedList

• TBtree

ROOT Course 38 Fons Rademakers

Types of Collections (contd.)

Unordered Collections

Unordered collections don’t maintain the order in which the elements were
added, i.e. when you iterate over an unordered collection, you are not likely
to retrieve elements in the same order they were added to the collection.
The following unordered collections are available:

• THashTable

• TMap

Iterators

Each collection class has its own associated iterator class.

An iterator object is used to traverse (walk through) a collection. For ex-
ample:

• TList TListIter

• TMap TMapIter

In general we will use the TIter wrapper class.

ROOT Course 39 Fons Rademakers

The TCollection Abstract Base Class

The TCollection class provides the basic protocol all collection
classes have to implement. Like:

• Add() , AddAll() , Remove() , RemoveAll()

• FindObject()

• MakeIterator()

• Clear() , Delete()

The ROOT collection classes always store pointers to objects that inherit
from TObject . They never adopt the objects. Therefore, it is the user’s re-
sponsability to take care of deleting the actual objects once they are not
needed anymore. In exceptional cases, when the user is 100% sure nothing
else is referencing the objects in the collection, one can delete all objects
and the collection at the same time using the Delete() function. To clear
or reset a collection use Clear() (this clears the collection memory struc-
tures but does not delete the objects). Clear() typically is also called via
the collection destructor.

Typically there is only one owning collection. For example:
class TEvent : public TObject {
private:
 TList *fTracks; //list of all tracks
 TList *fVertex1; //subset of tracks part of vertex1
 TList *fVertex2; //subset of tracks part of vertex2
 ...
};

TEvent::~TEvent()
{
 fTracks->Delete(); delete fTracks;
 delete fVertex1; delete fVertex2;
}

ROOT Course 40 Fons Rademakers

A Collectable Class

// TObjNum is a simple container for an integer.
class TObjNum : public TObject {
private:
 int num;

public:
 TObjNum(int i = 0) : num(i) { }
 ~TObjNum() { Printf("~TObjNum = %d", num); }
 void SetNum(int i) { num = i; }
 int GetNum() { return num; }
 void Print(Option_t *)
 { Printf("num = %d", num); }

 Bool_t IsEqual(TObject *obj)
 { return num == ((TObjNum*)obj)->num; }
 Bool_t IsSortable() const { return kTRUE; }
 Int_t Compare(TObject *obj)
 { if (num < ((TObjNum*)obj)->num)
 return -1;
 else if (num > ((TObjNum*)obj)->num)
 return 1;
 else
 return 0; }
 ULong_t Hash() { return num; }
};

IsEqual() is used by the FindObject() collection method. By default
TObject::IsEqual() compares the two object pointers

IsSortable() and Compare() need to be implemented by all sortable
classes. By default a TObject is not sortable.

Hash() needs to be implemented by all objects that need to be stored in a
hashtable (THashTable , THashList and TMap). By default
TObject::Hash() returns the address of the object. It is essential to
choose a good hash function.

ROOT Course 41 Fons Rademakers

The TList Collection

A TList is a doubly linked list. Before being inserted into the list the
object pointer is wrapped in a TObjLink object which contains, besides the
object pointer also a previous and next pointer.

Objects are typically added using:

• Add()

• AddFirst(), AddLast()

• AddBefore(), AddAfter()

Main features of TList: very low cost of adding/removing elements any-
where in the list.

Overhead per element: 1 TObjLink , i.e. two (4 byte) pointers + pointer
to vtable = 12 bytes.

ROOT Course 42 Fons Rademakers

Iterating over a TList

There are basically four ways to iterate over a TList:

1 Using the ForEach macro:
 GetListOfPrimitives()->ForEach(TObject,Draw)();

2 Using the TList iterator TListIter (via the wrapper class TIter):
 TIter next(GetListOfTracks());
 while (TTrack *obj = (TTrack *)next ())
 obj->Draw();

3 Using the TObjLink list entries (that wrap the TObject*):
 TObjLink *lnk = GetListOfPrimitives()->FirstLink();
 while (lnk) {
 lnk->GetObject()->Draw();
 lnk = lnk->Next();
 }

4 Using the TList’s After() and Before() member functions:
 TFree *idcur = this;
 while (idcur) {
 ...
 ...
 idcur = (TFree*)GetListOfFree()->After(idcur);
 }

Method 1 uses internally method 2.

Method 2 works for all collection classes. TIter overloads operator().

Methods 3 and 4 are specific for TList .

ROOT Course 43 Fons Rademakers

The TObjArray Collection

An array of TObjects. The array expands automatically when objects
are added. Overloads operator[] to get builtin like array semantics.

At creation time specify default array size (default = 16) and lowerbound
(default = 0). Resizing involves a re-alloc and a copy of the old array to the
new. Can be costly if done too often. If possible, set initial size close to ex-
pected final size. Bounds are always checked (if 100% sure and maximum
performance needed you can use UnCheckedAt() instead of At() or op-
erator[]).

If stored objects are sortable array can be sorted (using Sort()). Once
sorted, efficient searching using the BinarySearch() method.

Iterate using:

1 TIter

2 for (int i = 0; i < fArr.GetLast(); i++)
 if ((track = (TTrack*)fArr [i])) // or fArr.At(i)
 track->Draw();

Main features of TObjArray: simple, well known array semantics.

Overhead per element: none, except possible oversizing of fCont .

class TClonesArray : public TObjArray {
private:
 TObjArray *fKeep;
 TClass *fClass;
};

space for identical
objects of type fClass

Delete() calls dtor of fClass and
clears links from fCont to fKeep

fCont

ROOT Course 44 Fons Rademakers

TClonesArray - Array of Identical Objects

An array of clone (identical) objects. The memory for the objects
stored in the array is allocated only once in the lifetime of the clones array.
All objects must be of the same class. For the rest this class has the same
properties as TObjArray .

The class is specially designed for repetitive data analysis tasks, where in
a loop many times the same objects are created and deleted.

ROOT Course 45 Fons Rademakers

Theory of the TClonesArray

To reduce the very large number of new and delete calls in large loops like
this (O(100000) x O(10000) times new/delete):

TObjArray a(10000);
while (TEvent *ev = (TEvent *)next()) { // O(100000)
 for (int i = 0; i < ev->Ntracks; i++) { // O(10000)
 a[i] = new TTrack(x,y,z,...);
 ...
 ...
 }
 ...
 a.Delete();
}

One better uses a TClonesArray which reduces the number of new/delete
calls to only O(10000):

TClonesArray a("TTrack", 10000);
while (TEvent *ev = (TEvent *)next()) { // O(100000)
 for (int i = 0; i < ev->Ntracks; i++) { // O(10000)
 new(a[i]) TTrack(x,y,z,...);
 ...
 ...
 }
 ...
 a.Delete();
}

Considering that a new/delete costs about 70 µs, O(109) new/deletes will
save about 19 hours.

For the other collections see the reference guide on the web and
the test program $ROOTSYS/test/tcollex.cxx.

ROOT Course 46 Fons Rademakers

Intermezzo: ROOT Collections Compared to Zebra

The Zebra MZ package supports lists by including in each bank
(object) a previous and next pointer. The problem with this
scheme is that each bank can only be member of one list at a time.

Using the ROOT collection classes objects can be in a large num-
ber of collections at the same time.

The same goes for iterators. Using iterators you can make differ-
ent traversals of a collection at the same time. This would not be
possible if each collection would contain iterator state informa-
tion, like a pointer to the current element.

ROOT Course 47 Fons Rademakers

The ROOT Histogram Classes

ROOT contains a rich set of histogram classes.

The histogram classes are named THdp where d (dimension) can be 1, 2 or
3. The precision p can be C (for char), S (for short), F (for float) or D (for
double). For all dimensions, both fixed and variable bin size options are
supported.

For example, TH1F is a class for 1-D histograms where a float is used to in-
crement the sum of weights for each channel. That means that you can cre-
ate histograms with 1, 2, 4 or 8 bytes per channel. TH2D is a 2-D histo-
gram with a double word to store the sum of weights.

In addition, a special class TProfile handles profile histograms.

All these histogram classes derive from the base class TH1. Therefore, most
functions described below can be found in the documentation of TH1. The
TH1 class, in turn, derives from TNamed. Histograms are identified by a
name and they have a title. TH1 also derives (via multiple inheritance)
from the standard ROOT attribute classes:

• TAttLine: describing the line attributes.

• TAttFill: describing the fill area attributes.

• TAttmarker: describing the marker attributes.

class TH1 : public TNamed, public TAttLine,
 public TAttFill, public TAttMarker { };

The TH1 class defines an extensive set of histogram functions, including
functions for: adding, multiplying, scaling, drawing, setting, getting, fit-
ting, etc.

ROOT Course 48 Fons Rademakers

The ROOT Histogram Classes (contd.)

The TH1C class can be used to create histograms where a maximum sum of
weights (or number of entries per bin in case weights are equal to 1) is less
than 256.

The TH1S class has a similar limit at 65536.

TH1F is the most frequently used histogram class (equivalent to HBOOK1).
It uses a 32 bits floating point to store the sum of weights per channel.

The TH1D class may be used where the sum of weights requires high preci-
sion. This may be the case when the dynamic of weights is large.

The TProfile class derives from TH1D.

The TH2p classes derive from the corresponding TH1p classes and also
from the auxiliary class TH2.

The TH3p classes derive from the corresponding TH1p classes and also
from the auxiliary class TH3.

ROOT Course 49 Fons Rademakers

Creating Histograms

An histogram is created by invoking one of the class constructors. For ex-
ample, a 1-D histogram with a fixed number of bins is created with:

TH1F *hfix = new TH1F("hfix","hf title",nbins,xlow,xup);

where nbins is the number of bins and xlow is the low-edge of the first
bin and xup is the upper-edge of the last bin, so:

TH1F("hfix", "hf title", 3, 0, 3)

defines a histogram with 3 bins ranging from 0 to 3 (bin 1 = 0-1, bin 2 = 1-
2, bin 3 = 2-3).

A variable bin size histogram is created with:

TH1F *hvar = new TH1F("hvar","hvar title",nbins,xbins);

where xbins is an array of nbins+1 floats containing the low-edge of the
first nbins bins and the upper-edge of the last bin.

2-D histograms are created in the same way (4 different constructors for
each precision) with fixed/variable bins along x and/or y.

3-D histograms, currently, have either all fixed bins or all variable bins.

When a histogram is created, it is added to the list of objects in
memory in the current directory (we will soon come back to the
concept of directories in ROOT).

ROOT Course 50 Fons Rademakers

Filling Histograms

Histograms of all types are filled using the appropriate Fill() function:

• Fill(x) increment by 1 the bin corresponding to x .

• Fill(x,w) increment by w the bin corresponding to x .

• Fill(x,y) increment by 1 the cell corresponding to x and y .

• Fill(x,y,w) increment by w the cell corresponding to x and y .

• Fill(x,y,z), etc. for 3-D histograms.

In all cases, parameters x and y are of type Float_t (32 bits floating
point). The parameter w is of type Stat_t (64 bits floating point).

In case, the function TH1::Sumw2() has been called before filling the his-
togram, the sum of squares of weights is also incremented for each channel
or cell.

Compared to HBOOK/PAW, the Fill() function always increments the
histogram data to later compute the mean and the standard deviation.

ROOT Course 51 Fons Rademakers

Drawing Histograms

All histograms can be drawn using the Draw("option") member func-
tion. Many different draw options are supported.

The following options are supported by all histograms:

• "SAME" Superimpose on previous picture in the same pad

• "CYL" Use Cylindrical coordinates

• "POL" Use Polar coordinates

• "SPH" Use Spherical coordinates

• "PSR" Use PseudoRapidity/Phi coordinates

• "LEGO" Draw a lego plot with hidden line removal

• "LEGO1" Draw a lego plot with hidden surface removal

• "LEGO2" Draw a lego plot using colors to show the cell contents

• "SURF" Draw a surface plot with hidden line removal

• "SURF1" Draw a surface plot with hidden surface removal

• "SURF2" Draw a surface plot using colors to show the cell contents

• "SURF3" Same as SURF with in addition a contour view drawn on
 the top

• "SURF4" Draw a surface using Gouraud shading

ROOT Course 52 Fons Rademakers

Drawing Histograms (contd.)

The following options are supported by 1-D histograms:

• "A" Do not draw the axis labels and tick marks

• "B" Bar chart option

• "C" Draw a smooth curve through the histogram bins

• "E" Draw error bars

• "E0" Draw error bars including bins with 0 contents

• "E1" Draw error bars with perpendicular lines at the edges

• "E2" Draw error bars with rectangles

• "E3" Draw a fill area through the end points of the vertical
 error bars

• "E4" Draw a smoothed filled area through the end points of the
 error bars

• "L" Draw a line through the bin contents

• "P" Draw current marker at each bin

• "* " Draw a * at each bin

ROOT Course 53 Fons Rademakers

Drawing Histograms (contd.)

The following options are supported by 2-D histograms:

• "ARR" Arrow mode, shows gradient between adjacent cells

• "BOX" A box is drawn for each cell with surface proportional to
 contents

• "COL" A box is drawn for each cell with a color scale varying with
 contents

• "CONT" Draw a contour plot (same as CONT3)

• "CONT0" Draw a contour plot using colors to distinguish contours

• "CONT1" Draw a contour plot using line styles to distinguish
 contours

• "CONT2" Draw a contour plot using the same line style for all
 contours

• "CONT3" Draw a contour plot using fill area colors

• "FB" With LEGO or SURFACE, suppress the Front-Box

• "BB" With LEGO or SURFACE, suppress the Back-Box

• "SCAT" Draw a scatter-plot (default)

All options are case insensitive.

Have a look at the file $ROOTSYS/tutorials/h1draw.C to see how the
different draw options can be used. Also the TH1 reference web page shows
many examples of draw options.

Once a histogram has been drawn, you can modify its attributes and/or
drawing options by using the contextmenu item DrawPanel .

ROOT Course 54 Fons Rademakers

Writing Histograms

Like any ROOT object, histograms can be written to a file (made
persistent). For example:

 hist->Write();

where hist is a pointer to a TH1 derived object.

When a histogram is created, it is added in the list of objects of the current
directory in memory. If no file is open at the time of its creation, the histo-
gram is added to the default list of objects in memory. If a file exists, the
histogram is added to the list of in memory objects associated to the file. To
write the full list of associated memory objects to the file, do:

 file->Write()

where file is the pointer to the file (TFile) object.

More on files and how to make (your own) objects persistent will
follow soon.

ROOT Course 55 Fons Rademakers

Reading Histograms

Assume you have opened a file using, for example:

 TFile f("histos.root");

you can do

 f.ls()

to see the list of objects in this file. In an interactive session, you can read
directly a histogram in memory, by just typing its name, or:

 hist1->Draw()

ROOT will automatically load the object hist1 in memory and create a
pointer to it with the same name. Note that this is a ROOT extension to
C++ and only works while in an interactive ROOT session.

The recommended way (working both in compiled and interpreted mode) is
to do:

 TH1F *hist1 = (TH1F*)f.Get("hist1");

In this case, it is your responsibility to apply the correct cast.

You can also use the browser (see TBrowser). Double-clicking on a histo-
gram, loads the histogram in memory and draws it.

A histogram is read in memory in the list of memory objects associated to
the current directory. This allows for histograms with the same name in
different files.

ROOT Course 56 Fons Rademakers

Histogram Operators

For each histogram class the following operators are overloaded:

• THdp& operator=(TH dp&)

• THdp operator+(TH dp&, TH dp&)

• THdp operator-(TH dp&, TH dp&)

• THdp operator*(TH dp&, TH dp&)

• THdp operator/(TH dp&, TH dp&)

• THdp operator*(TH dp&, Float_t)

Where dp are dimension and precision.

Using these operators you can write expressions like:

TH1F h = h1*2.5 + h2*8;
TH1F hf;
hf = h/h1;

Note that this works only with references and not pointers. Pointers need
to be dereferenced:

TH1S hs = (*hs1) + (*hs2);
hs.Draw();

ROOT Course 57 Fons Rademakers

Intermezzo: Converting from HBOOK to ROOT

Using the program h2root you can convert your current PAW/HBOOK
files to ROOT files. Simply do:

h2root histos.hbook

This will create the file histos.root. All HBOOK histograms, profiles
and Ntuples (RWN and CWN) in all directories will be converted to THdF’s,
TProfile ’s and TNuple ’s. The directory structure will be conserved.

Ntuples variable names are capitalized. For example, TRACK becomes
Track and PX becomes Px.

Thanks to h2root you can quickly and easily migrate from PAW to ROOT.

ROOT Course 58 Fons Rademakers

Fitting in ROOT

Fitting in ROOT is based on the TMinuit class. The TMinuit class is a re-
write in C++ of the well known FORTRAN version.

You can either directly use the TMinuit class or use specialized functions
provided in the TH1 histogram class or the graph classes TGraph and TG-
raphErrors .

The TMinuit class acts on a multiparameter fit function FCN. In the
ROOT implementation, the function FCN is defined via the
TMinuit::SetFCN() member function when a TH1::Fit() command is
invoked. The value of FCN will in general depend on one or more variable
parameters.

To take a simple example, in case of TH1p histograms the Fit() function
defines the TMinuit fitting function as being H1FitChisquare() .
H1FitChisquare() calculates the chi-square between the user fitting
function (gaussian, polynomial, user defined, etc.) and the data for given
values of the parameters. It is the task of TMinuit to find those values of
the parameters which give the lowest value of chi-square.

ROOT Course 59 Fons Rademakers

Fitting 1-D Histograms

Fitting histograms is done via TH1::Fit(). The name of the fitted func-
tion (the model) is passed as first parameter. This name may be one of the
ROOT pre-defined function names or a user-defined function:

With pre-defined functions

The following functions are automatically created when any fitting func-
tion is invoked:

• "gaus " A gaussian with 3 parameters:
 f(x) = p0*exp(-0.5*((x-p1)/p2)^2))

• "expo " An exponential with 2 parameters:
 f(x) = exp(p0+p1*x)

• "pol N" A polynomial of degree N:
 f(x) = p0 + p1*x + p2*x^2 +...

For example, the following command will fit a histogram object hist with
a gaussian:

hist->Fit("gaus");

By default, the fitting function object will be added to the histogram object
and it will be drawn on top of the histogram. For pre-defined functions,
there is no need to set initial values for the parameters. ROOT will do it
automatically for you.

ROOT Course 60 Fons Rademakers

Fitting 1-D Histograms (contd.)

With user-defined functions

You can fit using a TF1 function object. The TF1 function may be created
using known expressions, like: sin , cos , exp , etc. (see TFormula for refer-
ence). For example, the following command creates a function called "my-
fit " with 3 parameters in the range between 0 and 2:

TF1 *myfit = new TF1("myfit",
 "[0]*sin(x) + [1]*exp(-[2]*x)", 0, 2, 3);

Next, we can set parameter names (optional) and parameter start values
(mandatory):

myfit->SetParName(0, "c0");
myfit->SetParName(1, "c1");
myfit->SetParName(2, "slope");
myfit->SetParameter(0, 1);
myfit->SetParameter(1, 0.05);
myfit->SetParameter(2, 0.2);

We are now ready to fit:

hist->Fit("myfit");

You can also create your own C++ fitting function.

This function must have 2 parameters:

1 Double_t *x: a pointer to the variables array. This array must be a 1-
D array in case of a 1-D histogram, a 2-D array for a 2-D histogram, etc.

2 Double_t *par: a pointer to the parameters array. par will contain
the current values of parameters when it is called by the FCN function.

ROOT Course 61 Fons Rademakers

Fitting 1-D Histograms (contd.)

The following macro fitexample.C illustrates how to fit a 1-D his-
togram stored in a ROOT file with a user-defined function:

//_________macro fitexample.C___________
Double_t fitf(Double_t *x, Double_t *par)
{
 Double_t arg = 0;
 if (par[2]) arg = (x[0] - par[1])/par[2];

 Double_t fitval = par[0]*TMath::Exp(-0.5*arg*arg);
 return fitval;
}

void fitexample()
{
 TFile *f = new TFile("hsimple.root");

 TH1F *hpx = (TH1F*)f->Get("hpx");

 TF1 *func = new TF1("fit",fitf,-3,3,3);
 func->SetParameters(500,hpx->GetMean(),
 hpx->GetRMS());
 func->SetParNames("Constant","Mean_value","Sigma");
 hpx->Fit("fit");
}

ROOT Course 62 Fons Rademakers

Fitting 1-D Histograms (contd.)

Fitting a sub-range of the histogram bins

By default, TH1::Fit() will fit the function on the defined histogram
range. You can specify the option "r" in the second parameter to restrict
the fit to the range specified in the TF1 object. For more complete ex-
amples, see the tutorials ‘‘A simple fitting example’’ and ‘‘Fitting histo-
gram sub-ranges’’.

The last example also il-
lustrates how to fit several
functions to the same his-
togram. By default, a fit
operation deletes the pre-
viously fitted function in
the histogram object. You
can specify the option "+"
in the second parameter of
TH1::Fit() to add the
newly fitted function to the
existing list of fitted func-
tions for this histogram.
Note that the fitted
function(s) are saved with
the histogram when the
histogram is written to a
ROOT file.

All these options are
available via the histo-
gram FitPanel. Access-
able via the histogram
contextmenu.

ROOT Course 63 Fons Rademakers

Adding Your Own Classes to ROOT

If you want to integrate your classes into the ROOT system, to enjoy fea-
tures like, extensive RTTI and ROOT object I/O and inspection, you have
to add the following line to your class header files:

 ClassDef(ClassName,ClassVersionID) //The class title

For example in TLine.h we have:

 ClassDef(TLine,1) //A line segment

The ClassVersionID is used by the ROOT I/O system. It is written on
the output stream and during reading you can check this version ID and
take appropriate action depending on the value of the ID (see Streamer()
later). Every time you change the data members of a class you should in-
crease its ClassVersionID by one. The ClassVersionID should be >=1.
Set ClassVersionID=0 in case you don’t need object I/O.

Similarly, in your implementation file you must add the statement:

 ClassImp(ClassName)

For example in Line.cxx :

 ClassImp(TLine)

Note that you MUST provide a default constructor for your classes, i.e. a
constructor with zero parameters or with one or more parameters all with
default values in case you want to use object I/O. If not you will get a com-
pile time error.

The ClassDef and ClassImp macros are necessary to link your classes to
the dictionary generated by CINT.

The ClassDef and ClassImp macros are defined in the file Rtypes.h.
This file is referenced by all ROOT include files, so you will automatically
get them if you use a ROOT include file.

ROOT Course 64 Fons Rademakers

Intermezzo: The Default Constructor

ROOT object I/O requires every class to have a default constructor. This
default constructor is called whenever an object is being read from a ROOT
database. Be sure that you don’t allocate any space for embedded pointer
objects in the default constructor. This space will be lost (memory leak)
while reading in the object. For example:

class T49Event : public TObject {
private:
 Int_t fId;
 TCollection *fTracks;
 ...
 ...
public:
 // Error space for TList pointer will be lost
 T49Event() { fId = 0; fTrack = new TList; }
 // Correct default initialization of pointer
 T49Event() { fId = 0; fTrack = 0; }
 ...
 ...
};

The memory will be lost because during reading of the object the pointer
will be set to the object it was pointing to at the time the object was writ-
ten.

Create the fTrack list when you need it, e.g. when you start filling the list
or in a not-default constructor.
...
if (!fTrack) fTrack = new TList;
...

ROOT Course 65 Fons Rademakers

The CINT Dictionary Generator

In the following example we walk through the steps necessary to
generate a dictionary and I/O and inspect member functions.

Let start with an TEvent class which contains a collection of TTracks:

#ifndef __TEvent__
#define __TEvent__

#include "TObject.h"

class TCollection;
class TTrack;

class TEvent : public TObject {

private:
 Int_t fId; //event sequential id
 Float_t fTotalMom; //total momentum
 TCollection *fTracks; //collection of tracks

public:
 TEvent() { fId = 0; fTracks = 0; }
 TEvent(Int_t id);
 ~TEvent();

 void AddTrack(TTrack *t);
 Int_t GetId() const { return fId; }
 Int_t GetNoTracks() const;
 void Print(Option_t *opt="");
 Float_t TotalMomentum();

 ClassDef(TEvent,1) //Simple event class
};

ROOT Course 66 Fons Rademakers

The CINT Dictionary Generator (contd.)

And the TTRack header:

#ifndef __TTrack__
#define __TTrack__

#include "TObject.h"

class TEvent;

class TTrack : public TObject {

private:
 Int_t fId; //track sequential id
 TEvent *fEvent; //event to which track belongs
 Float_t fPx; //x part of track momentum
 Float_t fPy; //y part of track momentum
 Float_t fPz; //z part of track momentum

public:
 TTrack() { fId = 0; fEvent = 0; fPx = fPy = fPz = 0; }
 TTrack(Int_t id, Event *ev, Float_t px, Float_t py,
 Float_t pz);

 Float_t Momentum() const;
 TEvent *GetEvent() const { return fEvent; }
 void Print(Option_t *opt="");

 ClassDef(TTrack,1) //Simple track class
};

#endif

ROOT Course 67 Fons Rademakers

The CINT Dictionary Generator (contd.)

The things to notice in these header files are:

• The usage of the ClassDef macro

• The default constructors of the TEvent and TTrack classes

• The usage of comments to describe the data members and the comment
after the ClassDef macro to describe the class.

The intended usage of these classes is that one creates and event object
with a certain id and then add tracks to the event. As one can see the track
objects contain a pointer to the event to which they belong. This to show
that the I/O system will correctly handle circular references.

Next the implementation of these two classes. Event.cxx :

#include <iostream.h>

#include "TOrdCollection.h"
#include "TEvent.h"
#include "TTrack.h"

ClassImp(TEvent)

...

...

and Track.cxx:

#include <iostream.h>

#include "TMath.h"
#include "Track.h"
#include "Event.h"

ClassImp(TTrack)

...

...

ROOT Course 68 Fons Rademakers

The CINT Dictionary Generator (contd.)

Now using rootcint we can generate the dictionary file:

rootcint eventdict.cxx -c TEvent.h TTrack.h

Looking in the file eventdict.C we can see, besides the many member
function calling stubs (used internally by the interpreter), the Streamer()
and ShowMembers() functions for the two classes. Streamer() is used to
stream an object to/from a TBuffer and ShowMembers() is used by the
Dump() and Inspect() methods of TObject . Here is the
TEvent::Streamer() method:

//_______________________________________
void TEvent::Streamer(TBuffer &R__b)
{
 // Stream an object of class TEvent.

 if (R__b.IsReading()) {
 Version_t R__v = R__b.ReadVersion();
 TObject::Streamer(R__b);
 R__b >> fId;
 R__b >> fTotalMom;
 R__b >> fTracks;
 } else {
 R__b.WriteVersion(TEvent::IsA());
 TObject::Streamer(R__b);
 R__b << fId;
 R__b << fTotalMom;
 R__b << fTracks;
 }
}

The TBuffer class overloads the operator<<() and operator>>() for
all basic types and for pointers to objects. These operators write and read
from the buffer and take care of any needed byte swapping to make the
buffer machine independent. During writing the TBuffer keeps track of
the objects that have been written and multiple references to the same ob-
ject are replaced by an index. Also the object’s class information is stored.

ROOT Course 69 Fons Rademakers

The CINT Dictionary Generator (contd.)

Concerning Streamer() :

• It does not know what to do with pointers to basic types

• It does not know what to do with non-TObject derived objects (or
struct’s)

Both these cases need manual intervention. Cut and paste the generated
Streamer() in the class’ source file and modify as needed (e.g. add
counter for array of basic types) and disable the generation of the
Streamer() using the LinkDef.h file (see rootcint -?) for next runs of
rootcint .

To exclude a data member from the Streamer() add ! in comment field,
e.g.:

 Int_t fTempVal; //! temp state value

To prevent generation of Streamer() , in case you don’t want to do I/O
(and not to prevent the generation of a Streamer() because you already
have a customized version), do:

 ClassDef(TEvent, 0)

ROOT Course 70 Fons Rademakers

The CINT Dictionary Generator (contd.)

And here is the TEvent::ShowMembers() :

//___
void TEvent::ShowMembers(TMemberInspector &R__insp,
 char *R__parent)
{
 // Inspect the data members of an object of
 // class TEvent.

 TClass *R__cl = TEvent::IsA();
 Int_t R__ncp = strlen(R__parent);
 R__insp.Inspect(R__cl, R__parent, "fId", &fId);
 R__insp.Inspect(R__cl, R__parent, "fTotalMom",
 &fTotalMom);
 R__insp.Inspect(R__cl, R__parent, "*fTracks",
 &fTracks);
 TObject::ShowMembers(R__insp, R__parent);
}

The ShowMembers() method gives access, via a TMemberInspector ob-
ject, to an object’s data member names and their matching addresses. This
allows for complete introspection of every ROOT object during run time
(via TObject::Dump() and TObject::Inspect()).

As can be seen both Streamer() and ShowMembers() call correctly up
the hierarchy of base classes.

ROOT Course 71 Fons Rademakers

Extending ROOT with Shared Libraries

We can now compile the TEvent and TTrack classes and the
eventdict.cxx dictionary file and link them together into a single
shared library, event.so (see $ROOTSYS/test/Makefile on how to cre-
ate a shared library for your platform).

Loading a shared library in a running ROOT session is trivial, first start
root , then type:

root [0] gSystem.Load("event.so")
(int)0

A return value of 0 means that the load was successful. Now lets verify
that the classes TEvent and TTrack can be seen by the system:

root [1] .class TEvent
==
class TEvent //Simple event class
...
...
root [2] gClassTable.Print()
Defined classes
class version initialized
===
TEvent 1 No
TTrack 1 No
...
...

When loading a shared library using gSystem.Load() the system will
look for the library in the Root.DynamicPath search path as specified in
your .rootrc file.

So, instead of re-linking the root executable with your libraries you should
use shared libraries to dynamically extend the system. Typically, you put
the gSystem.Load() command(s) in your rootlogon.C file.

ROOT Course 72 Fons Rademakers

Writing Objects to a ROOT Database

Objects inheriting from the class TObject and having a valid
Streamer() method can be made persistent (i.e. written to a file). Before
writing an object to a file, you must first create a NEW file or open an exist-
ing file in UPDATE or RECREATE mode. For example:

 TFile f1("file1.root","NEW");
 TFile f2("file2.root","RECREATE");
 TFile f3("file3.root","UPDATE");

Objects in a file are identified by a key (see class TKey). A key is an object
with all the necessary information to locate an object stored in a file (its
name, title, size, position and a few other parameters). A file has a direc-
tory consisting of the list of keys. A key is automatically created by an op-
eration such as obj->Write("keyname"). Write() is a member function
of the TObject class and performs the following operations:

• It creates a TBuffer object buf (see class TBuffer)

• It fills the buffer by invoking obj->Streamer(buf)

• It writes the buffer to the file

• It adds a new key with the name "keyname" to the list of keys

When your object derives from TNamed, you may omit the parameter "key-
name". For example, for a TH1F object, you can write: obj->Write(). The
key created in this case will get the name from the TNamed object. If you
write a key with a name already existing in the file, a new cycle (a la VMS)
is created. You can use TFile::ls() or TFile::Map() to see the list of
all keys (i.e. objects) and records in a file.

Use TDirectory::pwd() to see the current directory. To make sub-
directories in a file or directory create TDirectory objects:

TDirectory *dir = new TDirectory("dirname", "title");
dir->cd();

The current file and directory can be accessed via the globals gFile and
gDirectory (e.g. gDirectory->pwd()).

ROOT Course 73 Fons Rademakers

Reading Objects From a ROOT Database

There are two ways to read an object from a file.

Via TFile::Get() or TDirectory::Get() if you are in a sub-directory.
Assume an existing file f (created by TFile f("myfile.root")). You
can list all the keys (persistent objects in the file) via f.ls() . To read an
object in memory (for example a TH1F object), you can do:

 TH1F *hist = (TH1F*)f.Get("hist_name");

f.Get() will create an object of class TH1F using the following sequence
of operations:

• Find the key (e.g. hist_name) in the list of keys

• Create a TBuffer object

• Read the buffer from the file

• Create an empty object by calling the default constructor for the class
referenced in the TKey

• Call the Streamer() function for this new object

In case of an object with multiple cycles, one can return the desired cycle (a
la VMS) with f.Get("name;cycle") .

This method via TDirectory::Get() is interesting to return an object by
its name in complete random access.

ROOT Course 74 Fons Rademakers

Reading Objects From a ROOT Database (contd.)

In case of a very long list of objects to be processed sequentially (this could
be a list of events), it is simpler and more efficient to scan the list of keys
directly. The example below illustrates at the same time the use of an it-
erator to loop on all keys of a file:

 TIter nextkey(f.GetListOfKeys());
 TKey *key;
 while (key = (TKey*)nextkey ()) {
 TEvent *event = (TEvent*)key->Read();
 event->Process();
 }

Extra: The TWebFile

Make your ROOT files available to colleagues via the WWW. Use a TWeb-
File. A TWebFile is a read-only TFile that allows the reading of a ROOT
database via a standard (slightly modified) Apache webserver. For ex-
ample:

root [0] TWebFile f("http://root.cern.ch/files/hs.root")
root [1] f.ls()
TWebFile** http://root.cern.ch/files/hs.root
TWebFile* http://root.cern.ch/files/hs.root
KEY: TH1F hpx;1 This is the px distribution
KEY: TH2F hpxpy;1 py vs px
KEY: TProfile hprof;1 Profile of pz versus px
KEY: TNtuple ntuple;1 Demo ntuple
root [2] hpx.Draw()

ROOT Course 75 Fons Rademakers

Intermezzo: Navigating in a ROOT Database

A ROOT database can have directories and sub-directories just like a file
system. Using these directories you can group and order your objects in a
logical hierarchy.

You navigate in the database using the global pointer, gDirectory. This
pointer always points to the current directory (TDirectory). On connect-
ing a file (TFile) the gDirectory points to the top directory of the new
file. Using the TDirectory methods:

• mkdir(const char *name, cont char *title= "")

• cd(const char *dir)

• ls()

• pwd()

you can create a new directory, change directory, list objects in a directory
and print the path of the current directory.

For example:

root [0] TFile f("db.root","new")
root [1] f.mkdir("histos")
root [2] f.mkdir("ntuples")
root [3] f.cd("histos")
root [4] TH1F *h = new TH1F("hist1","hist1", 100, 0, 100)
root [5] h.Write()
root [6] gDirectory.ls()
TDirectory* histos histos
 OBJ: TH1F hist1 histogram 1 : 0
 KEY: TH1F hist1;1 histogram 1
root [7] gDirectory.pwd()
db.root:/histos
root [8] gDirectory.cd("..")
root [9] gDirectory.pwd()
db.root:/
root [10] f.Write()
TFile Writing Name=db.root Title=
root [11] f.Close()

ROOT Course 76 Fons Rademakers

Storing Many, Many Identical Objects

